CSS
Layout

Naming Elements with an ID or Class

To have more control over your css you can name your HTML
elements with an ID or Class. ldentifiers (ID) are unique names given
to an element. A class can be used to name more than one element.

Name your <d 1v=> with an ID or class within the opening tag of the
element:

<div 1d="“sidebar’”> </div>

<div class="left—-column”> </div>

In your CSS document, |ID selectors begin with a hashtag, and class
selectors begin with a period:

ID
html <div 1d=“sidebar”’> </div>
css #sidebar { float: left:; }

Class
html <div class="left-column”> </div>
css . left—=column { float: left:; }

The display property allows you to turn a block element
to an inline element and vice versa.

causes a block-level element to act like an inline element
(.e. making list items appear like a horizonal nav)

causes an Inline element to act like a block-level
element

Box Model

When setting heights
and widths for an
element in CSS you
must take into account
accurate measurements
for all your boxes’
properties (i.e. padding,
margins, etc).

This Is the content
that is contained
within the box. This
applies to text and
Images.

.column {
width: 300px;
10px;
margin: 20px;
border: S5px solid green;

}

Total Width of Box=
370px

box-sizing: border-box

The above CSS declaration is fairly new, but a bit of a game changer.
It takes away the need to account for and add the padding and
border widths into the total width of the box.

The box-sizing property allows us to include the padding and border
In an element's total width and height.

It is good practice for most developers to now include this universally
in their CSS.

"
box-sizing: border-box;

;

Without box-sizing

300px width + 1px border = 302px total

<!DOCTYPE html> This div is smaller (width is 300px and height

<html> is 100px).
<head>

<style>
.divl {
width: 300px;
height: 100px;
border: 1lpx solid blue;

}

.div2 { This div is bigger (width is also 300px and
width: 300px; height is 100px).
height: 100px;
padding: 50px;
border: 1lpx solid red;
}
</style>
</head>
<body>

<div class="div1">This div is smaller (width
is 300px and height is 100px).</div>

<div class="div2">This div is bigger (width
is also 300px and height is 100px).</div>

</body>
</html>

300px width + 50px padding
+ 1px border = 402px total width

Math

With box-sizing

300px width

<!DOCTYPE html>
<html>
<head>
<style>
.divl {
width: 300px;

Both divs are the same size now!

height: 100px;

border: 1lpx solid blue;

box-sizing: border-box;
}
Hooray!
.div2 {

width: 300px;

height: 100px;
padding: 50px;
border: 1lpx solid red;
box-sizing: border-box;
}
</style>
</head>
<body>

<div class="div1">Both divs are the same size
now!</div>

<div class="div2">Hooray!</div>

</body>
</html>

300px width

No Math

Box Dimensions

When using percentages, the size of the box is relative to the size of
the browser window, or if the box Is encased within another box, it Is a
percentage of the size of the containing box.

When using ems, the size of the box is based on the the size of the
text that it sits inside of.

<!DOCTYPE html>
<html>

<head>

<style>

#yellowbox {
height: 300px;
width: 50%;
background-color:

}

#bluebox {

height: 200px;

width: 50%;

background-color: powderblue;

}

#redbox {
font-size: 20px;
height: 100px;
width: 5em;
background-color:

}

#greenbox {
height: 50px;
width: 5rem;
background-color:

}

</style>
</head>
<body>

<div id="vyellowbox">
<div id="bluebox">
<div id="redbox">
<div id="greenbox">
</div>
</div>
</div>
</div>

</body>
</html>

Layouts

Fixed layout utilizes pixel measurements that do not change sizes as
the user increases or decreases the size of their browser window.

Fluid layout utilizes percentage measurements and stretch and
contract as the user increases or decreases the size of their browser
Wilglele)A

Floating Elements

Floating an element allows you to take that element out of the normal
flow and position it to the far right or left of it’s parent box. This is how
you create multi-column layouts.

Div 1 Div 1 Div 2 Div 3

Div 2

Div 3

Normal flow float: left:

Positioning Elements

position: fixed

The element will not remain in the natural flow of the page. It will
position itself according to the viewport.

It will respond to the following properties:

<!DOCTYPE html> .
<html> position: fixed;
<head>

<§tyl§> An element with position: fixed; is positioned relative to the viewport, which
div.f }X?d { , means it always stays in the same place even if the page is scrolled:
position: fixed;
bottom: @;
right: 0;
width: 300px;
border: 3px solid #73AD21;
}
</style>
</head>
<body>

<h2>position: fixed;</h2>

<p>An element with position: fixed; is positioned
relative to the viewport, which means it always stays in
the same place even if the page is scrolled:</p>

<div class="fixed">
This div element has position: fixed;
</div>

</body>
</html>

his div element has position: fixed;

position: absolute

The element will not remain in the natural flow of the page. It will

position itself according to its parent container—which must be set to
position: relative

It will respond to the following properties:

<!DOCTYPE html>
<html>
<head>
<style>
div.relative {
position: relative;
width: 400px;
height: 200px;
border: 3px solid #73AD21;
b

div.absolute {
position: absolute;
top: 80px;
right: 0;
width: 200px;
height: 100px;
border: 3px solid #73AD21;

b

</style>

</head>

<body>

<h2>position: absolute;</h2>

<p>An element with position: absolute; is positioned
relative to the nearest positioned ancestor (instead of
positioned relative to the viewport, like fixed):</p>

<div class="relative">This div element has position:
relative;

<div class="absolute">This div element has position:
absolute;</div>
</div>

</body>
</html>

position: absolute;

An element with position: absolute; is positioned relative to the nearest positioned
ancestor (instead of positioned relative to the viewport, like fixed):

his div element has position: relative;

his div element has position:
absolute;

Z-Index

z-index allows you to “bring to front” or “bring to back™ an element that
IS positioned absolute or fixed, allowing you to control which box
appears on top.

The value of the z-index property is a number, and the higher the
number the further that element is on top.

<!DOCTYPE html>
<html> o
Shtmt> The z=index Property
<style>
img { Because the image has a z-index of -1, it will be placed behind the heading.
position: absolute;
left: 10px;
top: 10px;
z—-index: -1;
}
</style>
</head>
<body>

<h1>The z-index Property</hl>

<p>Because the image has a z-index of -1, it will be
placed behind the heading.</p>

</body>
</html>

